




peak is clearly observed for yields of 40% or higher (SI Appendix,
Fig. S8). This LOD can be attributed to the photolyzed diazirine’s
highly reactive nature and its ability to insert readily into most
molecules. The diazirine monolayer effectively reacts completely
with the unpurified reaction mixture upon irradiation, and it is
therefore unsurprising that several peaks are observed in addition to
the product insertion peak. Although the LOD is higher than ideal,
most reaction development programs would not pursue reactions
below this ∼30% yield. Consequently, this LOD can be viewed as
advantageous for robust reaction development. Efforts are un-
derway to evaluate this platform’s LOD for various reaction types.
The hit reactions were scaled to validate our findings and

determine if these provided suitable yields (Fig. 3). The hit-
reaction yields ranged from moderate (40%) to high (70%). The
higher yields were consistent with the higher intensity SAMDI-MS
peaks relative to other mixture components captured, and the
moderate yields corresponded to the lower relative intensity peaks
(Fig. 3B). Given the inconsistencies that often occur between
matrix-assisted laser desorption/ionization (MALDI-MS) high-
throughput screen outputs and UPLC or scaled-up results (22,
24) we ran 10 different scaled-up reactions with nonhit conditions

(SI Appendix, Table S1). No false negatives were observed. Only
three sets of reaction conditions resulted in any product conver-
sion (see SI Appendix, Table S1 entries 1, 3, and 4); however, the
isolated yields were below the LOD (30–40% yield). These data
(Fig. 3 and SI Appendix, Table S1) establish that our screening
platform identifies valid hits as long as the yields are above the
limit of detection.
Li and coworkers’ mechanistic insights for light-induced pho-

toredox alkyl transfer with the Hantzsch ester (Bn HEH) heavily
informs our proposed reaction pathway in Fig. 4 (29). Addi-
tionally, TEMPO, a radical scavenger, was applied to the best hit
conditions and no product was observed, indicating that radical
intermediates are involved (SI Appendix, Fig. S9). To better
understand the radical intermediate, cyclic voltammetry (CV)
measurements were performed on the acyl benzimidazolium salt
(E1, Fig. 4B). Smooth, reversible electron transfer was observed
for this substrate, indicating that the ketyl radical intermediate is
stable until introduced to the benzyl radical for coupling (Fig.
4A). We were also pleased to observe that this reaction could be
applied with two other benzyl Hantzsch esters on hand (Br-Bn
HEH and F-Bn HEH) with moderate yields (Fig. 4C). Efforts are

Fig. 2. (A) Diazirine monolayer preparation. (B) Authentic product photocapture. (C) Screen workflow. (D) Screen parameters.
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currently underway to investigate the scope of this reaction
further.

Conclusion
In conclusion, this work demonstrates an HTA that allowed us to
efficiently and extensively evaluate an intermolecular carbon-
carbon bond forming reaction. With regard to the technology

developed, previous MALDI-based high-throughput platforms
rely on ionizable functional groups built into the substrates in-
volved in the reactions investigated. Our ionizable functional
group (positively charged trimethyllysine) was built into the
monolayer; therefore, it does not interfere with the reactions, but
aids analysis. Moreover, given that we do not have to build our
reaction around ionizable groups since ours is incorporated in

Fig. 3. (A) Scaled-up hit reactions (0.1 mmol E1, 0.15 mmol Bn HEH). (B) Hit spectra for entries 1–6.
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the SAM, TI-SAMDI-MS can be applied generally to any reaction.
What distinguishes this platform most from other matrix-assisted
laser desorption/ionization time of flight (MALDI-TOF)–based
high-throughput methods is that for our approach the screen
results consistently match the scaled-up or UPLC results. Such
reliability is especially significant given that inconsistency be-
tween screen results and UPLC or scaled-up results has been a
persistent problem with MALDI-MS analytical technology
(22). The TI-SAMDI-MS platform overcomes this inconsis-
tency issue while retaining the rapid analytics that MALDI-MS
provides.
Our screen clearly and rapidly established that the acyl ben-

zimidazolium salt (E1) was the superior ketyl radical precursor,
and that the Hantzsch ester (Bn HEH) was the optimal alkyl
radical precursor. This method also allowed us to identify spe-
cific nonobvious hit conditions (stoichiometric LiCl in MeCN)
to achieve 70% yields. This transformation discovered via TI-
SAMDI-MS is fundamental, and more broadly, the implications
of both the HTA and this chemical discovery are significant.
With nearly 2,000 reactions evaluated in ∼2.5 h, this semi-
quantitative analysis platform offers enormous value to reaction
development programs. Importantly, the photogenerated carbene
C-H insertion capture process enables the use of simple, non-
electronic or sterically biasing label, a benzylic methyl group. Fi-
nally, the radical–radical coupling discovered offers an intriguing
strategy to form carbon-carbon bonds.

Materials and Methods
Diazirine SAMDI-Array Plate Preparation. Steel plates formatted to 384 wells
coatedwith titanium (5 nm) and patternedwith gold (30 nm)were soaked (18
h) in an ethanolic solution of tri(ethylene glycol)-alkanethiol (EG3-alka-
nethiol) disulfide and a mixed disulfide of EG3-alkanethiol and maleimide-
terminated EG3-alkanethiol (0.1 mM). The arrays were subsequently washed

with EtOH, deionized ultrafiltered (DIUF) H2O, EtOH again, and dried under
a stream of N2. The photoaffinity linker solution (1 μM in Tris buffer, pH 8)
was applied to the plates (1 μL per spot) and warmed to 37 °C for 30 min.
Upon completion, the diazirine monolayer plate was washed with ethanol,
DIUF H2O, EtOH again, and dried under a stream of N2.

Photoredox Reactions. Reactions were run in oven-dried glass vials in Para-
Dox 96-well-plate reactor blocks. The 96-well plates were brought into
the glovebox and the four reaction components were added as stock
solutions using micropipettes. The plates were sealed with screwed top
lids equipped with polytetrafluoroethylene (PTFE) gaskets, removed
from the glovebox, and placed on Lumidox 96-Well Blue LED arrays atop
a magnetic stirrer (500 rpm). After 18 h, the plates were unsealed for
analysis.

Reaction Photoimmobilization. Upon photoredox reaction completion, crude
reaction mixture aliquots (1 μL from four 96-well plates) were directly
pipetted onto the 384 diazirine monolayer spots. The 384-spot plate was
then placed inside a UVP Cross-linker 1000L and irradiated (10 min, λ=
365 nm).

SAMDI Data Analysis. After reaction photoimmobilization, the array plates
were washed (DIUF, then EtOH), treated with 2,4,6-trihydroxyacetophenone
matrix (20 mg/mL in acetone), and dried using a stream of N2. SAMDI arrays
were analyzed via MALDI-TOF MS using an AB Sciex 5800 series instrument
with 20-kV accelerating voltage in positive reflector mode (200 laser shots to
each spot). The obtained spectra were analyzed in an automated fashion
using the Applied Biosystems Data Explorer Software.

Data Availability. See SI Appendix for experimental details, spectra, and
screening results.
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Fig. 4. (A) Proposed reaction pathway. (B) CV data for acyl benzimidazolium salt (E1). (C) Further examples with different Bn HEHs.
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